MATH3280A Introductory Probability, 2014-2015 Solutions to HW3

P. 136 Ex. 4

Solution

Let E_{1}, E_{2}, and E_{3} be the events that a person has disease D_{1}, D_{2} and D_{3} respectively.
Let F be the event that a person has symptom A.
The assumption that no one carries more than one of these three diseases means that E_{1}, E_{2}, and E_{3} are mutually disjoint.
The assumption that the only possible causes of symptom A are D_{1}, D_{2} and D_{3} means that $F \subset E_{1} \cup E_{2} \cup E_{3}$.

Then we have $F=F E_{1} \cup F E_{2} \cup F E_{3}$, which is a disjoint union.

$$
\begin{aligned}
P(F) & =P\left(F E_{1} \cup F E_{2} \cup F E_{3}\right) \\
& =P\left(F E_{1}\right)+P\left(F E_{2}\right)+P\left(F E_{3}\right) \\
& =P\left(F \mid E_{1}\right) P\left(E_{1}\right)+P\left(F \mid E_{2}\right) P\left(E_{2}\right)+P\left(F \mid E_{3}\right) P\left(E_{3}\right) \\
& =0.5 \times 0.05+0.7 \times 0.02+0.8 \times 0.035 \\
& =0.067
\end{aligned}
$$

Hence 6.7% of the population have symptom A.

P. 136 Ex. 7

Solution

Let E_{A}, E_{B} and E_{C} be the events that a prisoner who tried to escape used $\operatorname{road} \mathrm{A}, \mathrm{B}$ and C respectively.
Let S be the event that a prisoner succeeded in escaping.
By Bayes' Formula, we have

$$
\begin{aligned}
P\left(E_{C} \mid S\right) & =\frac{P\left(S \mid E_{C}\right) P\left(E_{C}\right)}{P\left(S \mid E_{A}\right) P\left(E_{A}\right)+P\left(S \mid E_{B}\right) P\left(E_{B}\right)+P\left(S \mid E_{C}\right) P\left(E_{C}\right)} \\
& =\frac{0.08 \times 0.2}{0.2 \times 0.3+0.25 \times 0.5+0.08 \times 0.2} \\
& =\frac{16}{201} \approx 0.0796
\end{aligned}
$$

Hence the probability that a prisoner who succeeded in escaping used road C is $\frac{16}{201}$.

